3.652 \(\int \frac {1}{(d+e x) (f+g x)^{3/2} \sqrt {a+c x^2}} \, dx\)

Optimal. Leaf size=387 \[ \frac {2 g^2 \sqrt {a+c x^2}}{\sqrt {f+g x} \left (a g^2+c f^2\right ) (e f-d g)}+\frac {2 \sqrt {-a} \sqrt {c} g \sqrt {\frac {c x^2}{a}+1} \sqrt {f+g x} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{\sqrt {a+c x^2} \left (a g^2+c f^2\right ) (e f-d g) \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {-a} g+\sqrt {c} f}}}-\frac {2 e \sqrt {\frac {c x^2}{a}+1} \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {-a} g+\sqrt {c} f}} \Pi \left (\frac {2 e}{\frac {\sqrt {c} d}{\sqrt {-a}}+e};\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|\frac {2 \sqrt {-a} g}{\sqrt {c} f+\sqrt {-a} g}\right )}{\sqrt {a+c x^2} \sqrt {f+g x} \left (\frac {\sqrt {c} d}{\sqrt {-a}}+e\right ) (e f-d g)} \]

[Out]

2*g^2*(c*x^2+a)^(1/2)/(-d*g+e*f)/(a*g^2+c*f^2)/(g*x+f)^(1/2)+2*g*EllipticE(1/2*(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*
2^(1/2),(-2*a*g/(-a*g+f*(-a)^(1/2)*c^(1/2)))^(1/2))*(-a)^(1/2)*c^(1/2)*(g*x+f)^(1/2)*(c*x^2/a+1)^(1/2)/(-d*g+e
*f)/(a*g^2+c*f^2)/(c*x^2+a)^(1/2)/((g*x+f)*c^(1/2)/(g*(-a)^(1/2)+f*c^(1/2)))^(1/2)-2*e*EllipticPi(1/2*(1-x*c^(
1/2)/(-a)^(1/2))^(1/2)*2^(1/2),2*e/(e+d*c^(1/2)/(-a)^(1/2)),2^(1/2)*(g*(-a)^(1/2)/(g*(-a)^(1/2)+f*c^(1/2)))^(1
/2))*(c*x^2/a+1)^(1/2)*((g*x+f)*c^(1/2)/(g*(-a)^(1/2)+f*c^(1/2)))^(1/2)/(-d*g+e*f)/(e+d*c^(1/2)/(-a)^(1/2))/(g
*x+f)^(1/2)/(c*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.57, antiderivative size = 387, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.321, Rules used = {958, 745, 21, 719, 424, 933, 168, 538, 537} \[ \frac {2 g^2 \sqrt {a+c x^2}}{\sqrt {f+g x} \left (a g^2+c f^2\right ) (e f-d g)}+\frac {2 \sqrt {-a} \sqrt {c} g \sqrt {\frac {c x^2}{a}+1} \sqrt {f+g x} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{\sqrt {a+c x^2} \left (a g^2+c f^2\right ) (e f-d g) \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {-a} g+\sqrt {c} f}}}-\frac {2 e \sqrt {\frac {c x^2}{a}+1} \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {-a} g+\sqrt {c} f}} \Pi \left (\frac {2 e}{\frac {\sqrt {c} d}{\sqrt {-a}}+e};\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|\frac {2 \sqrt {-a} g}{\sqrt {c} f+\sqrt {-a} g}\right )}{\sqrt {a+c x^2} \sqrt {f+g x} \left (\frac {\sqrt {c} d}{\sqrt {-a}}+e\right ) (e f-d g)} \]

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x)*(f + g*x)^(3/2)*Sqrt[a + c*x^2]),x]

[Out]

(2*g^2*Sqrt[a + c*x^2])/((e*f - d*g)*(c*f^2 + a*g^2)*Sqrt[f + g*x]) + (2*Sqrt[-a]*Sqrt[c]*g*Sqrt[f + g*x]*Sqrt
[1 + (c*x^2)/a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*g)/(Sqrt[-a]*Sqrt[c]*f - a*g)]
)/((e*f - d*g)*(c*f^2 + a*g^2)*Sqrt[(Sqrt[c]*(f + g*x))/(Sqrt[c]*f + Sqrt[-a]*g)]*Sqrt[a + c*x^2]) - (2*e*Sqrt
[(Sqrt[c]*(f + g*x))/(Sqrt[c]*f + Sqrt[-a]*g)]*Sqrt[1 + (c*x^2)/a]*EllipticPi[(2*e)/((Sqrt[c]*d)/Sqrt[-a] + e)
, ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (2*Sqrt[-a]*g)/(Sqrt[c]*f + Sqrt[-a]*g)])/(((Sqrt[c]*d)/Sqrt
[-a] + e)*(e*f - d*g)*Sqrt[f + g*x]*Sqrt[a + c*x^2])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 168

Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_Sym
bol] :> Dist[-2, Subst[Int[1/(Simp[b*c - a*d - b*x^2, x]*Sqrt[Simp[(d*e - c*f)/d + (f*x^2)/d, x]]*Sqrt[Simp[(d
*g - c*h)/d + (h*x^2)/d, x]]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && GtQ[(d*e - c
*f)/d, 0]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 537

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1*Ellipt
icPi[(b*c)/(a*d), ArcSin[Rt[-(d/c), 2]*x], (c*f)/(d*e)])/(a*Sqrt[c]*Sqrt[e]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-(f/e), -(d/c)
])

Rule 538

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 +
(d*x^2)/c]/Sqrt[c + d*x^2], Int[1/((a + b*x^2)*Sqrt[1 + (d*x^2)/c]*Sqrt[e + f*x^2]), x], x] /; FreeQ[{a, b, c,
 d, e, f}, x] &&  !GtQ[c, 0]

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
 c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 745

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m + 1)*(a + c*x^2)^(p
 + 1))/((m + 1)*(c*d^2 + a*e^2)), x] + Dist[c/((m + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^(m + 1)*Simp[d*(m + 1)
- e*(m + 2*p + 3)*x, x]*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[
m, -1] && ((LtQ[m, -1] && IntQuadraticQ[a, 0, c, d, e, m, p, x]) || (SumSimplerQ[m, 1] && IntegerQ[p]) || ILtQ
[Simplify[m + 2*p + 3], 0])

Rule 933

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[-(c
/a), 2]}, Dist[Sqrt[1 + (c*x^2)/a]/Sqrt[a + c*x^2], Int[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[1 - q*x]*Sqrt[1 + q*x]
), x], x]] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[c*d^2 + a*e^2, 0] &&  !GtQ[a, 0]

Rule 958

Int[((f_.) + (g_.)*(x_))^(n_)/(((d_.) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Int[ExpandIntegra
nd[1/(Sqrt[f + g*x]*Sqrt[a + c*x^2]), (f + g*x)^(n + 1/2)/(d + e*x), x], x] /; FreeQ[{a, c, d, e, f, g}, x] &&
 NeQ[e*f - d*g, 0] && NeQ[c*d^2 + a*e^2, 0] && IntegerQ[n + 1/2]

Rubi steps

\begin {align*} \int \frac {1}{(d+e x) (f+g x)^{3/2} \sqrt {a+c x^2}} \, dx &=\int \left (-\frac {g}{(e f-d g) (f+g x)^{3/2} \sqrt {a+c x^2}}+\frac {e}{(e f-d g) (d+e x) \sqrt {f+g x} \sqrt {a+c x^2}}\right ) \, dx\\ &=\frac {e \int \frac {1}{(d+e x) \sqrt {f+g x} \sqrt {a+c x^2}} \, dx}{e f-d g}-\frac {g \int \frac {1}{(f+g x)^{3/2} \sqrt {a+c x^2}} \, dx}{e f-d g}\\ &=\frac {2 g^2 \sqrt {a+c x^2}}{(e f-d g) \left (c f^2+a g^2\right ) \sqrt {f+g x}}+\frac {(2 c g) \int \frac {-\frac {f}{2}-\frac {g x}{2}}{\sqrt {f+g x} \sqrt {a+c x^2}} \, dx}{(e f-d g) \left (c f^2+a g^2\right )}+\frac {\left (e \sqrt {1+\frac {c x^2}{a}}\right ) \int \frac {1}{\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}} \sqrt {1+\frac {\sqrt {c} x}{\sqrt {-a}}} (d+e x) \sqrt {f+g x}} \, dx}{(e f-d g) \sqrt {a+c x^2}}\\ &=\frac {2 g^2 \sqrt {a+c x^2}}{(e f-d g) \left (c f^2+a g^2\right ) \sqrt {f+g x}}-\frac {(c g) \int \frac {\sqrt {f+g x}}{\sqrt {a+c x^2}} \, dx}{(e f-d g) \left (c f^2+a g^2\right )}-\frac {\left (2 e \sqrt {1+\frac {c x^2}{a}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {2-x^2} \left (\frac {\sqrt {c} d}{\sqrt {-a}}+e-e x^2\right ) \sqrt {f+\frac {\sqrt {-a} g}{\sqrt {c}}-\frac {\sqrt {-a} g x^2}{\sqrt {c}}}} \, dx,x,\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}\right )}{(e f-d g) \sqrt {a+c x^2}}\\ &=\frac {2 g^2 \sqrt {a+c x^2}}{(e f-d g) \left (c f^2+a g^2\right ) \sqrt {f+g x}}-\frac {\left (2 e \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {c} f+\sqrt {-a} g}} \sqrt {1+\frac {c x^2}{a}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {2-x^2} \left (\frac {\sqrt {c} d}{\sqrt {-a}}+e-e x^2\right ) \sqrt {1-\frac {\sqrt {-a} g x^2}{\sqrt {c} \left (f+\frac {\sqrt {-a} g}{\sqrt {c}}\right )}}} \, dx,x,\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}\right )}{(e f-d g) \sqrt {f+g x} \sqrt {a+c x^2}}-\frac {\left (2 a \sqrt {c} g \sqrt {f+g x} \sqrt {1+\frac {c x^2}{a}}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {1+\frac {2 a \sqrt {c} g x^2}{\sqrt {-a} \left (c f-\frac {a \sqrt {c} g}{\sqrt {-a}}\right )}}}{\sqrt {1-x^2}} \, dx,x,\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )}{\sqrt {-a} (e f-d g) \left (c f^2+a g^2\right ) \sqrt {\frac {c (f+g x)}{c f-\frac {a \sqrt {c} g}{\sqrt {-a}}}} \sqrt {a+c x^2}}\\ &=\frac {2 g^2 \sqrt {a+c x^2}}{(e f-d g) \left (c f^2+a g^2\right ) \sqrt {f+g x}}+\frac {2 \sqrt {-a} \sqrt {c} g \sqrt {f+g x} \sqrt {1+\frac {c x^2}{a}} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a g}{\sqrt {-a} \sqrt {c} f-a g}\right )}{(e f-d g) \left (c f^2+a g^2\right ) \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {c} f+\sqrt {-a} g}} \sqrt {a+c x^2}}-\frac {2 e \sqrt {\frac {\sqrt {c} (f+g x)}{\sqrt {c} f+\sqrt {-a} g}} \sqrt {1+\frac {c x^2}{a}} \Pi \left (\frac {2 e}{\frac {\sqrt {c} d}{\sqrt {-a}}+e};\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|\frac {2 \sqrt {-a} g}{\sqrt {c} f+\sqrt {-a} g}\right )}{\left (\frac {\sqrt {c} d}{\sqrt {-a}}+e\right ) (e f-d g) \sqrt {f+g x} \sqrt {a+c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 3.23, size = 468, normalized size = 1.21 \[ \frac {2 i (f+g x) \sqrt {\frac {g \left (x+\frac {i \sqrt {a}}{\sqrt {c}}\right )}{f+g x}} \sqrt {-\frac {-g x+\frac {i \sqrt {a} g}{\sqrt {c}}}{f+g x}} \left (\left (\sqrt {c} (d g-2 e f)+i \sqrt {a} e g\right ) F\left (i \sinh ^{-1}\left (\frac {\sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}}}{\sqrt {f+g x}}\right )|\frac {\sqrt {c} f-i \sqrt {a} g}{\sqrt {c} f+i \sqrt {a} g}\right )+\sqrt {c} (e f-d g) E\left (i \sinh ^{-1}\left (\frac {\sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}}}{\sqrt {f+g x}}\right )|\frac {\sqrt {c} f-i \sqrt {a} g}{\sqrt {c} f+i \sqrt {a} g}\right )+e \left (\sqrt {c} f-i \sqrt {a} g\right ) \Pi \left (\frac {\sqrt {c} (e f-d g)}{e \left (\sqrt {c} f+i \sqrt {a} g\right )};i \sinh ^{-1}\left (\frac {\sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}}}{\sqrt {f+g x}}\right )|\frac {\sqrt {c} f-i \sqrt {a} g}{\sqrt {c} f+i \sqrt {a} g}\right )\right )}{\sqrt {a+c x^2} \left (\sqrt {c} f-i \sqrt {a} g\right ) \sqrt {-f-\frac {i \sqrt {a} g}{\sqrt {c}}} (e f-d g)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x)*(f + g*x)^(3/2)*Sqrt[a + c*x^2]),x]

[Out]

((2*I)*Sqrt[(g*((I*Sqrt[a])/Sqrt[c] + x))/(f + g*x)]*Sqrt[-(((I*Sqrt[a]*g)/Sqrt[c] - g*x)/(f + g*x))]*(f + g*x
)*(Sqrt[c]*(e*f - d*g)*EllipticE[I*ArcSinh[Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]]/Sqrt[f + g*x]], (Sqrt[c]*f - I*Sqr
t[a]*g)/(Sqrt[c]*f + I*Sqrt[a]*g)] + (I*Sqrt[a]*e*g + Sqrt[c]*(-2*e*f + d*g))*EllipticF[I*ArcSinh[Sqrt[-f - (I
*Sqrt[a]*g)/Sqrt[c]]/Sqrt[f + g*x]], (Sqrt[c]*f - I*Sqrt[a]*g)/(Sqrt[c]*f + I*Sqrt[a]*g)] + e*(Sqrt[c]*f - I*S
qrt[a]*g)*EllipticPi[(Sqrt[c]*(e*f - d*g))/(e*(Sqrt[c]*f + I*Sqrt[a]*g)), I*ArcSinh[Sqrt[-f - (I*Sqrt[a]*g)/Sq
rt[c]]/Sqrt[f + g*x]], (Sqrt[c]*f - I*Sqrt[a]*g)/(Sqrt[c]*f + I*Sqrt[a]*g)]))/((Sqrt[c]*f - I*Sqrt[a]*g)*Sqrt[
-f - (I*Sqrt[a]*g)/Sqrt[c]]*(e*f - d*g)^2*Sqrt[a + c*x^2])

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(g*x+f)^(3/2)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {c x^{2} + a} {\left (e x + d\right )} {\left (g x + f\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(g*x+f)^(3/2)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(c*x^2 + a)*(e*x + d)*(g*x + f)^(3/2)), x)

________________________________________________________________________________________

maple [B]  time = 0.08, size = 2011, normalized size = 5.20 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)/(g*x+f)^(3/2)/(c*x^2+a)^(1/2),x)

[Out]

2*((-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2)*((-c*x+(-a*c)^(1/2))/(c*f+(-a*c)^(1/2)*g)*g)^(1/2)*((c*x+(-a*c)^(1
/2))/(-c*f+(-a*c)^(1/2)*g)*g)^(1/2)*EllipticF((-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2),(-(-c*f+(-a*c)^(1/2)*g)
/(c*f+(-a*c)^(1/2)*g))^(1/2))*a*c*d*g^3-EllipticF((-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2),(-(-c*f+(-a*c)^(1/2
)*g)/(c*f+(-a*c)^(1/2)*g))^(1/2))*a*c*e*f*g^2*(-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2)*((-c*x+(-a*c)^(1/2))/(c
*f+(-a*c)^(1/2)*g)*g)^(1/2)*((c*x+(-a*c)^(1/2))/(-c*f+(-a*c)^(1/2)*g)*g)^(1/2)+(-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)
*c)^(1/2)*((-c*x+(-a*c)^(1/2))/(c*f+(-a*c)^(1/2)*g)*g)^(1/2)*((c*x+(-a*c)^(1/2))/(-c*f+(-a*c)^(1/2)*g)*g)^(1/2
)*EllipticF((-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2),(-(-c*f+(-a*c)^(1/2)*g)/(c*f+(-a*c)^(1/2)*g))^(1/2))*c^2*
d*f^2*g-EllipticF((-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2),(-(-c*f+(-a*c)^(1/2)*g)/(c*f+(-a*c)^(1/2)*g))^(1/2)
)*c^2*e*f^3*(-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2)*((-c*x+(-a*c)^(1/2))/(c*f+(-a*c)^(1/2)*g)*g)^(1/2)*((c*x+
(-a*c)^(1/2))/(-c*f+(-a*c)^(1/2)*g)*g)^(1/2)-(-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2)*((-c*x+(-a*c)^(1/2))/(c*
f+(-a*c)^(1/2)*g)*g)^(1/2)*((c*x+(-a*c)^(1/2))/(-c*f+(-a*c)^(1/2)*g)*g)^(1/2)*EllipticE((-(g*x+f)/(-c*f+(-a*c)
^(1/2)*g)*c)^(1/2),(-(-c*f+(-a*c)^(1/2)*g)/(c*f+(-a*c)^(1/2)*g))^(1/2))*a*c*d*g^3+(-(g*x+f)/(-c*f+(-a*c)^(1/2)
*g)*c)^(1/2)*((-c*x+(-a*c)^(1/2))/(c*f+(-a*c)^(1/2)*g)*g)^(1/2)*((c*x+(-a*c)^(1/2))/(-c*f+(-a*c)^(1/2)*g)*g)^(
1/2)*EllipticE((-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2),(-(-c*f+(-a*c)^(1/2)*g)/(c*f+(-a*c)^(1/2)*g))^(1/2))*a
*c*e*f*g^2-(-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2)*((-c*x+(-a*c)^(1/2))/(c*f+(-a*c)^(1/2)*g)*g)^(1/2)*((c*x+(
-a*c)^(1/2))/(-c*f+(-a*c)^(1/2)*g)*g)^(1/2)*EllipticE((-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2),(-(-c*f+(-a*c)^
(1/2)*g)/(c*f+(-a*c)^(1/2)*g))^(1/2))*c^2*d*f^2*g+(-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2)*((-c*x+(-a*c)^(1/2)
)/(c*f+(-a*c)^(1/2)*g)*g)^(1/2)*((c*x+(-a*c)^(1/2))/(-c*f+(-a*c)^(1/2)*g)*g)^(1/2)*EllipticE((-(g*x+f)/(-c*f+(
-a*c)^(1/2)*g)*c)^(1/2),(-(-c*f+(-a*c)^(1/2)*g)/(c*f+(-a*c)^(1/2)*g))^(1/2))*c^2*e*f^3-EllipticPi((-(g*x+f)/(-
c*f+(-a*c)^(1/2)*g)*c)^(1/2),(-c*f+(-a*c)^(1/2)*g)/(d*g-e*f)/c*e,(-(-c*f+(-a*c)^(1/2)*g)/(c*f+(-a*c)^(1/2)*g))
^(1/2))*a*c*e*f*g^2*(-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2)*((-c*x+(-a*c)^(1/2))/(c*f+(-a*c)^(1/2)*g)*g)^(1/2
)*((c*x+(-a*c)^(1/2))/(-c*f+(-a*c)^(1/2)*g)*g)^(1/2)+EllipticPi((-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2),(-c*f
+(-a*c)^(1/2)*g)/(d*g-e*f)/c*e,(-(-c*f+(-a*c)^(1/2)*g)/(c*f+(-a*c)^(1/2)*g))^(1/2))*a*e*g^3*(-a*c)^(1/2)*(-(g*
x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2)*((-c*x+(-a*c)^(1/2))/(c*f+(-a*c)^(1/2)*g)*g)^(1/2)*((c*x+(-a*c)^(1/2))/(-c
*f+(-a*c)^(1/2)*g)*g)^(1/2)-EllipticPi((-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2),(-c*f+(-a*c)^(1/2)*g)/(d*g-e*f
)/c*e,(-(-c*f+(-a*c)^(1/2)*g)/(c*f+(-a*c)^(1/2)*g))^(1/2))*c^2*e*f^3*(-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2)*
((-c*x+(-a*c)^(1/2))/(c*f+(-a*c)^(1/2)*g)*g)^(1/2)*((c*x+(-a*c)^(1/2))/(-c*f+(-a*c)^(1/2)*g)*g)^(1/2)+Elliptic
Pi((-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2),(-c*f+(-a*c)^(1/2)*g)/(d*g-e*f)/c*e,(-(-c*f+(-a*c)^(1/2)*g)/(c*f+(
-a*c)^(1/2)*g))^(1/2))*c*e*f^2*g*(-a*c)^(1/2)*(-(g*x+f)/(-c*f+(-a*c)^(1/2)*g)*c)^(1/2)*((-c*x+(-a*c)^(1/2))/(c
*f+(-a*c)^(1/2)*g)*g)^(1/2)*((c*x+(-a*c)^(1/2))/(-c*f+(-a*c)^(1/2)*g)*g)^(1/2)-x^2*c^2*d*g^3+c^2*e*f*g^2*x^2-a
*c*d*g^3+a*c*e*f*g^2)*(c*x^2+a)^(1/2)*(g*x+f)^(1/2)/c/(d*g-e*f)^2/(a*g^2+c*f^2)/(c*g*x^3+c*f*x^2+a*g*x+a*f)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {c x^{2} + a} {\left (e x + d\right )} {\left (g x + f\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(g*x+f)^(3/2)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^2 + a)*(e*x + d)*(g*x + f)^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{{\left (f+g\,x\right )}^{3/2}\,\sqrt {c\,x^2+a}\,\left (d+e\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((f + g*x)^(3/2)*(a + c*x^2)^(1/2)*(d + e*x)),x)

[Out]

int(1/((f + g*x)^(3/2)*(a + c*x^2)^(1/2)*(d + e*x)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {a + c x^{2}} \left (d + e x\right ) \left (f + g x\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(g*x+f)**(3/2)/(c*x**2+a)**(1/2),x)

[Out]

Integral(1/(sqrt(a + c*x**2)*(d + e*x)*(f + g*x)**(3/2)), x)

________________________________________________________________________________________